
668 

REFERENCES 

5. 

6. 

7. 

a. 
9. 

LEE E.N., A boundary-value problem in the theory of plastic wave propagation, Quart. Appl. 
Math., 10, 1953. 

CLIFTON R.J. and TING T.C.T., The elastic-plastic boundary in one-dimensional wave 
propagation. J. Appl. Mech., 35, 2, 1968. 

TING T.C.T., On the initial speed of elastic-plastic boundaries in longitudinal wave 
propagation in a rod, J. Appl. Mech., 38, 1971. 

MASLOV V.P., MOSOLOV P.P. and SOSNINA E.V., On types of discontinuities of solutions.of 
the equations of longitudinal, free, one-dimensional motion in an elastic medium of 
different modulus in: Problems of Non-linear Mechanics of a Continuous Medium, Valguz, 
Tallinn, 1985. 

KULIKOVSKII A.G. and PEKUROVSKAYA L.A., On the fronts of strong and weak discontinuities 
in solutions of the equations of different-modulus elasticity theory, PMM, 53, 2, 1989. 

MASLOV V.P. and MOSOLOV P.P., General theory of the solutions of the equations of motion 
of a different-modulus elastic medium, PMM, 49, 3, 1985. 

MASLOV V.P., and MOSOLOV P.P., Elasticity Theory for a Different-modulus Medium, Izd. 
MIEM, MOSCOW, 1985. 

BLAND D., Non-linear Dynamical Theory of Elasticity, Mir, Moscow, 1972. 
LAX P.D., Hyperbolic system of conservation laws, Comm. Pure and Appl. Math., 10, 4, 1957. 

PMM U.S.S.R.,Vo1.54,No.5,pp.668-677,199O 002i-8928/90 $io.oo+o.oo 
Printed in Great Britain 01991 Pergamon Press plc 

Translated by M.D.F. 

MATERIAL AND SPATIAL REPRESENTATIONS OF THE CONSTITUTIVE RELATIONS 

OF DEFORMABLE MEDIA* 

The problem of giving 
for the constitutive 
(equivalence) to each 

a basis to material and spatial representations 
relations (CR) of media, their correspondence 
other, as well as the problem of the explicit 

resolution of implicit forms of CR (in material and spatial 
representations) are examined from the point of view of the general 
theory of constitutive relationships of the classical mechanics of a 
continuous medium, based on the principles of determinism and 
causality, locality, independence of the reference system, and the 
hypothesis of macrophysical determinacy. 

G.L. BROVKO 

Approaches based on the introduction of spatial-type tensors, used in an Euler descrip- 
tion (/20-281, say) are used in addition to the traditional approaches of the mechanics of a 
continuous medium that are in direct agreement with the macroscopic determinacy hypothesis 
/l, 2/, and expressed from the beginning, as a rule, in the terminology of the material-type 
tensors utilized in the Lagrange description of motion of a medium (see /2-7/, say), or ex- 
plicitly understood by the connection with such tensors (for instance /8-19/l. Numerous papers 
on plasticity that propose extrapolation of the CR, known for small deformations, by some 
method to the case of finite deformations in an Euler description are among them. 

Important questions arise here, in principle: 1) is such extrapolation legitimate from 
the point of view of the general classical theory of CR, i.e., does the CR obtained agree, 
in principle, with the postulate of macroscopic determinability? (the example in /28/ is 
one of the modifications of such an erroneous inconsistency), 2) which is the spatial 
representation (Euler form) of the constructed or known material (Lagrange) CR and 
vice-versa? 3) if the CR is constructed in implicit form, especially in the spatial tensor 

‘~Pr~kZ.Matem.Mekhan., 54,5,814-824,199O 
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terminology (for instance, in the form of a differential equation with objective 
derivatives), then is it uniquely solvable for the stress tensor (i.e., is the principle of 
determinism satisfied), and what is the procedure for such a solution (integration of the 
differential equations with objective derivatives)? Investigation of these questions could 
assist the analysis, ordering, and development of investigations on the construction of CR 
of complex media for finite strains in the direction of a sequential development of the 
theory of the experiment. 

In this paper a set of general reduced forms of CR of the classical mechanics of a 
continuous medium is derived, including the CR of the Il'yushin postulate of macroscopic 
determinability, and the No11 CR and answers are obtained to the questions formulated above, 
illustrated by examples. 

1. Tensor characteristics of mechanical processes. The equivdence of tensors and 
mappings. In the motion of a deformable medium with a Lagrange law of motion and the deform- 
ation affinor 

x=f(a,t), A=V,f=QXEYQ (1.1) 

(where a, x are the radius-vector of a point of the medium in reference (undeformed) and 
actual (deformed) configurations, t is the time, V, is the gradient operator on a, Q is 
orthogonal and X, Y are symmetric right and left polar expansion tensors of A), tensors of 
different ranks F above a basic (three-dimensional) vector space are used to describe the 
mechanical processes in a material neighbourhood of a point of the body: scalars 'p (r = U), 
vectors ". a (r = I), tensors U, Z of the second (r = 2) and higher ranks. Limiting our- 
selves here for simplicity to the cases r,<2 as in /6, 7, lb/, we separate the set of 
tensor characteristics (P,",% u, z that are transformed to the characteristics 'p*7 "** $7 
u*> z* as the reference system changes by means of the formulas 

rp* !='p, u* =u, a*=&, u*=u, Z*=0Z@T (1.2) 

where 8 z e(t) is the orthogonal tensor for the passage to the new reference system. 
Examples of such quantities for 'p, are the mass density, internal energy, and also 

scalar invariants of the remaining quantities in (1.2) or for u and s vectors of elementary 
material fibres in the reference configuration 6a and actual configuration 6x, respectively, 
as well as eigenvectors of any tensors U and 2 from (1.2), respectively, examples of U and 2 
are, respectively, right X and left Y distortion tensors from (l.l), the Cauchy C= X2 and 
Finger F = Y2 strain measures, the Green's E, = I/* (C - I) and Almansi E, = liz(l -F-l) strain 
tensors (I is the unit tensor), the material derivative El' and the strain rate tensor V, the 
Piola-Kirchhoff IX, = JA-ISA-'r and Cauchy s(/ = Idet~[) etc. /l-29/ stress tensors of the 
second kind. 

The tensors u, U, etc, that are transformed into similar ones (I. 2 I), are called 
materially (reference) oriented (or right, for brevity), and the tensors s, 2 and similar 
ones (r>l) spatially oriented (or briefly, left). All the tensors (r>(O) from (1.2) are 
called objective (in recent years the names "objective" or "independent of the reference 
system" or "indifferent" have often referred in the literature to just the left tensors (see 
/9-12, 16/, for instance). As the examples presented above show, they can be used for an 
objective description of mechanical processes: materially oriented from the aspect of the 
observer connected to a material particle (in the reference configuration), spatially 
oriented from the aspect of a spatial observer, and objective scalars from both aspects. 
Thus, the state of strain and stress in a material particle of a medium is described com- 
pletely, from both aspects, by the right tensors X and ZI (for the Lagrange description), 
and by the left tensors Y and S (for the Euler description), respectively. 

Later, on the basis of the Lagrange (mateial, reference) description, we will consider 
all the objective tensors. Let Mr) and Scr)(r>l) denote sets of right and left tensor 
processes of rank r while J!(O) = S(O) is a set of objective scalars for a given material 
particle. It is clear that MC'), Set) are only subsets of all the mechanical tensor character- 
istics (tensor processes). 

Just like the well-known relations Sx = ASa, Y = QXQ T, s = A&AT the right and left 
tensors, describing the very same mechanical processes from the aspects mentioned, can be 
connected by equivalence relationships of the form 

z-Au, Z=AUA (1.3) 

where A and A are non-degenerate tensors of the second rank that are transformed in the same 
way as (1.2) as the reference system changes, according to the formulas 

A* 3 88, A, 3 MT (1.4) 

The simplest case of relationships of the type (1.3), realized for A E .1T is examined 
in /29/. Without limiting ourselves to this case, we note that the tensors A. A satisfying 
(1.4) allow of a unique representation of the form 
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A--E, A E rp (9, r E ~4~“)) (1.5) 

where Q is from (1.1). Therefore, selection of the tensors A, A determining the equivalence 
relationships (1.3) reduces to selecting the right tensors &I". If the tensors A,A (or 

9, r) are determined by the strain affinor process A of this material particle 

A = 1 [A], A = m [Al, Z = 1, [Al, r = m,, ]A] (1.6) 

then their selection reduces to selecting the mappings 2, m satisfying (1.4), or l,, n,, 
that take values in Mz). 

Taking account of (1.4) or (1.5) for the selected A,A relationships (1.3) set up a 
one-to-one correspondence between the sets M(') and SW of the tensor processes of rank 
r, and for any mapping LM : M(P) --f M(s) also induce the mapping action Ls: S(I) -, SW: 

LY]CP] = LM[(P] (P = q = 'J), Ls]cpI = ALi~]cp] (P = 0, Q= 1) 
Ls]q]= ALM[(P]A (p = 0, q = Z), Ls [z] = LM [A-%] (p = 1, ci = 0) 
Ls[z] = AL,,, [A-%] (p = q = I), Ls [zj = ALM [A-'z] A (p = 1. q = 2) 

Ls [Z] = LM [A-‘ZA-‘1 (p = 2, q = II) 

Ls [Z]= AL'MIA-rZA-l] (p : 2,q = 1) 

Ls [Z] = ALM[A-rZA-r]A (p -q := 2) 

(1.7) 

and conversely, by using formulas inverse to (1.7) for any La : S(P) _, S(P) we obtain LM : M(p) 
--f M(4). In particular, if L,:iW-. M(rf is a material diferentiation operator, then by 
denoting it by a dot (.)' and its spatial analogue LB [.I by D 1.1, we obtain 

D [cpl EZ ‘P’ (r = 0), D [zlr A (A-'z)'=z' -C&z (1. = I), (1.8) 
D [Z]= A (A-lZA-l)‘A~ Z'- G4Z-ZG,, (r = 2) 

(GA= b'A-=, cr., = A-IA) 

By using relationships of the type (1.3) and (1.8) and taking (1.6) into account, on 
the basis of the left tensors V,S E S(2) (V = sym(A’A-‘) is the strain rate tensor and S is 
the Cauchy stress tensor), tensor strain measures Y E M(Z), E E S@) and stress measures 
Z E M(2) can be introduced by the equations 

'y'= A;'VA;', D [El= V, Z = A,=SA,r (1.9) 

where A,, A1(l = 1,2) are non-degenerate tensors satisfying relationships (1.4) and (1.6), 
D,[.]rD[.] from (1.8) with AzsA,,A=A,. and then EEAWA. 

Formulas (1.8) and (1.9) include, as special cases, the known /2-27, 29f derivatives of 
left vectors and tensors as well as the tensor strain and stress measures obtained by a 
different selection A,,Al (1 = 1.2). 

2. The non-dependence of the mappings and equations on the reference system. As a rule, 
mappings (functions, functionals and operators) independent of the reference system, i.e., 
the rules for giving (determining) them are identical in all reference systems, are used to 
describe the connections of the mechanical processes at a given material neighbourhood of a 
point of the body. Namely, the mapping L:I’+ n, where I' and II are sets of some sets 

YEr and Nan of scalar, vector, and tensor characteristics of mechanical processes, 
will be said to be independent of the reference system if, on chaning to an arbitrary new 
reference system (when y,z.r,lI, L are converted to Y*,f*, ret n,,L,) we have r* =r, E,= E 
(conservation of the domain of definition and the domain of values) as well as either of the 
following two (equivalent) assertions 

L, = L, a?, = L ly*l, Yy E I? (2.1) 

Differentiation operators and integration operators with respect to time, and the 
operations of addition, multiplication of scalar, vector, and tensor quantities (processes) 
may be examples of such mappings for different r and ll. In cases when the arguments or 
values of the mapping L are converted according to definite formulas (for example, of the 
from (1.2) or (1.4)) on changing to a new reference system, then a universal canonical re- 
presentation (general reduced form) is obtained successfully for the mapping L that is 
independent of the reference system. This example yields the following lemma. 

Lenma 1. If relations (1.4) (or (1.5)) are satisfied and the mappings 1 and m (or &I 
and m,) in (1.16) are independent of the reference system, then the mappings 1, and m, (or 
1 and m) are independent of the reference system and the following representations hold 

l[A] zz Ql[X]=QL,[X], m[A]== m[X]QTz?rzm,[X]QT (2.2) 
&]A]-ZO]X]zl[X], m,[A]-m,[X]sm[X] 
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The operators LM and Ls from (1.7) are of interest. 

Lerma 2. The mapping L = LM : M(p) -f hi(‘) is independent of the reference system if and 
only if it is invariant shifts of the time argument 

or (t) = I, ]v (r)] + s (t + C) = L 1~ (,- + 41, Vc = const 

For such LM the mappings LS from (1.7), considered as operators only over s -? .Sl),Z E 
$2' etc. (p, 4 > I), are not generally independent of the reference system. However, the 
tensors A, A from (1.4) occur in their definition (1.7), i.e., the Ls are parametrized by 
the tensors A, A, and then the Ls considered as mappings of the pair of tensors y ={s; A) 
or the triplet of tensors y = (2; A, A} in S(p) etc., are independent of the reference 
system in the sense of (2.1). 

This is seen from the following more general assertion (we henceforth limit ourselves 
to tensors of just the second rank U, Z). 

Lenmz 3. For the tensor processes U EM@) and z E S(2) let the relations (1.3)- 
(1.5) be satisfied with non-degenerate A. A and let parametrized tensors A,A of the 
mapping L,IU; A,Al and L, M; A,Al be given with values in a set of tensor processes of 
the second rank in any reference system related one-to-one by a relation of the type (1.7) 
and its inverse 

L, [Z; A, A] = AL,, [A-IZA-l; A, A] A (2.3) 

L,[U;A,A]= A-lL,[AUA;A,A]A-l 

Then: 1) L, takes a value in M@j if and only if L,, takes a value in So)); 2) L, and 
L, are independent of the reference system only simultaneously; 3) L, and L, are isotropic 
in thesetof arguments only simultaneously; 4) if L, and L, are independent of the reference 
system and take values in fi1@) and J'(2) , respectively, then they allow of the following 
representations (general reduced forms) 

L, [u; A, A] 5 Len [u; P, r] s YL,, [sur; 8, r] r-1 

LI [Z; A, A] = QL,, [QTZQ; 8, r] QT s AL,, [A-~zA-$ 8, r] .i 

(2.i) 

where L,, and L,, are invariant under shifts of the time argument. 

Corollary 1. The mapping Ls from (1.71, parametrized by the tensors A, A is indepen- 
dent of the reference system only simultaneously with LM. 

C0r011ary 2. If 9 = r= I, are selected in (1.5) under the conditions of Lemma 3, then 
the reduced forms (2.4) have the simple form 

L, KJ; A, A1 = L,, [VI, (2.5) 
L, [z; A, Al CE QL,, [Q’ZQI QT = QL,, [VI QT 

(L,, KJI = L, KJ; I, I)1 

Example 1. Let 

L, [U; A, A]=fn (U, U' , ., UC"); E, r) 

be a tensor-valued function (of second rank) of the instantaneous values of the arguments. 
Then, by 12.3) and (2.4), 

L1 [Z; A, A]r Afo(A-'ZA-',A-'DIZ]~~-l,..., A-‘D[Z] A-‘;S,k”) A = 
:f,(Z,D[Z],...,D"[Z];A,A) 

is also a tensor-valued function. In particular, for SST=1 we have (2.5) with 

&l,]U] = fo (U, U’, . . . . u(k); I, I)=:f(U, U' , ., U(k)) 

where if f. and fi (meaning also f) are isotropic in the set of variables, then 12.5) takes 
the form 

L, ]U;A,A]S~(U,U',...,U'")) 

L, [Z. A A]= f (Z,Z”, ., Z'(r)) ? 9 

where z', Z"', _, Z'(") are neutral derivatives 16, 7, 11-13, 15-17, 20/ up to the order of k 
inclusive. 

Lemma 3 establishes a one-to-one correspondence between the sets of mappings L, and L, 

parametrized by the tensors A, A and their properties and yields their reduced forms. 
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Corollaries 1 and 2 show that the absence of parametrization of the mapping L, (when /.,, l,,i 
does not remove parametrization of the mapping L, (L,-= Ls) and does not result in any appreci- 
able simplification of the properties (Lemma 2) or the general reduced forms (2.4) of the 
mappings I,,= L, and L,-= 1.s. On the other hand, the absence of parametrization of the 
mapping L, independent of the reference system results in a much narrower subclass of mappings 

12, and their material analogues L,, and reduced forms of a more special kind than (2.4). 
Analogous concepts and assertions can be extended to the case when the correspondence 

between the tensor processes y and n is given in implicit form, namely, in the form of an 
equation, generally, parametrized by a set X of certain other tensor processes 

ZI ly (T), Jc (T); x (T)l = 0 (2.6) 

We say that (2.6) is independent of the reference system if it has one and the same set 
of solutions - sets of tensor processes {v, S; x), in all the reference systems, i.e., the 
kernel H is conserved 

11 = 0 * Ii, = Cl (her N = her H,) (2.7) 

In the case of the unique solvability of (2.6) for n in the form of a certain mapping 
L Iv; xl the definition (2.7) obviously corresponds to L being independent of the reference 
system in the sense of (2.1). On the other hand, if H is a mapping independent of the 
reference system in the sense of (2.11, then (2.6) is independent of the reference system 
in the sense of (2.7). Assertions analogous to those presented above for operators of the 
form (2.1) hold for Eqs.(2.6) and (2.7). 

Lemma 4. For the tensor processes U, 
Z = A,Uh,, T = A;l”PA;l’ 

P and 2, T equivalent in the sense of (1.3), let 
pairwise, where Al, Al (I = 1,2) are non-degenerate and satisfy 

the relations (1.4) and (1.5), and suppose we are given the equations H, [U,P;A,,A,]= 0 and 
H,lZ,T; AI, A,1 = 0, connected by equivalence relations for the mentioned U, P, Z, T, i.e. 

H, [Z, T; Al, Ai] = 0% H, [A,‘ZA;‘, A,=TA*T; A,, A,] = 0 

H, [U. P; AI, A,] = 0~ H, [AIUA,, A;‘=P@; Al, A,] = 0 

(2.8) 

Then 1) u, P E &I(z) w Z, T E W); 2) the equations H, = 0 and H, = 0 are independent 
of the reference system only simultaneously; 3) the equations Ho=0 and H, = 0 are 
isotropic in the set of their unknowns (and parameters) only simultaneously; 4) if u, P tz 

M@), Z,T E W) and the equations H, =0 and H, = 0 are independent of the reference 
system, then they allow of the following reduced forms: 

where Hoe = 0 and H,, = 0 are invariant under a shift of the time argument. 
The assertions of Corollaries 1 and 2 are carried over analogously to the cases of 

(2.8) and (2.9). Thus for e,z r,= I we obtain (2.9) in the form 

H, [U, P; A,, A,] = 0 (i H,, [UJ’] = 0 

H, [Z. T; AI, A,] = 061 H,, [Q'ZQ, QTIQ] = 0 

(2.10) 

Exm&e 2. Just as in Example 1, we give the equation Ho= 0 in the form of an ordinary 
differential equation 

h, (U, u’, . , W), P, P', ., P? 3,. rl) y 0 

Then according to (2.8) and (2.91, we have the equation H,= 0 in the form 

h, (A;‘ZA;“, A;lDl [Z] A;‘, :. ., A;‘D,” [Z] A;’ 

A,TTA,T?.~TD> [T] A2T, . . ., AZTD2 [T] AIT; 8,, T,) = 0 

I.e., after renotation 

h, (z, D, lz]. ,, D,K [Zl, T, D, [Tl, ., Dzrn ITI; Ar, A,) -= 0 

For s1 = r,= I we have (2.10) with 

H,[.U,P]~h,(U,U’,..., u tk) P P’, . ., PC”‘); I, I) =: h (U, U’. . . . . U@), P, P’. ., PC’“)) , , 
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where, if the equations h, = 0 (and h, =:: 0). meaning also h=O, are isotropic in the set 

of unknowns, then the equation II, = 0 takes the form 
h (X, z", . .,Z'@),T, T", ., T'("')) = 0 

3. Cmstitutive re&d&nships (CR): ezpticit and impli@t reduced fem. The fundamental 

principles; determinism and causality,'locality, and independence of the reference system, 
are assumed in the mechanics of a continuous medium for constructing the CR connecting the 
characteristics of the stress and strain state (we confine ourselves to isothermal processes). 
The classical tensor measures of stress and strain of the second rank, reproducibile in 
principle in M-tests /1/ with homogeneous specimens and their states (we call the measures 
of stress U and strain s reproducibe in such tests macroscopic measures) are used as the 
stress and strain state characteristics in the classical theory of the CR stipulating 
satisfaction of the macrophysical determinacy hypotheses /l, 2/. 

The strain affinor A, the Cauchy stress tensor S, different right and left measures 
including (1.9), and others can be used as the macroscopic measures of o and e. Any right 
tensor processes of the second rank o,,e,~M(~), whose histories up to any time t are uniquely 
and independently of the reference system related to the histories of the tensors XI and X 
up to the time t, where e, and X are connected independently 

~(a, t) = def [X(a,r)lr<l. %(a, t) = str[X(a, r), &(a, T)J%~~ (3.1) 

X (a. f) = Def [e, (aI T)12+ & (a, t)Str [so (a, T), no (a, t)lzGt 

will be called right measures of stress and strain. 
Any spatial analogues of the tensors oO, s, constructed in the same way as (1.9) 

according to (1.3), (1.6), and (2.2) 

el = A,‘=u,&‘~, e, = A,e,A, (3 2) 

will be called left measures of the stress and strain ul,e,. 
Taking account of Lemmas 1-3 and the Corollaries (Sect.l), we obtain the following 

theorem. 

Theorem 1. The CR of any medium has infinitely many general material representations 
(in terms of e~,e,) and spatial representations (in terms of or, e,) in the form 

uO(a, t) = LaIso(a7r)lr~t (3.3) 

ul(a, t) = L, [sl(a. ");A, (a, r), Al (aVr)llst 

where the relationships (1.3)-(1.6), (2.2), (3.1), (3.2) with non-degenerate A,, AI (1 = 1, 2), 
are satisfied, the mappings L,, L, are independent of the reference system, take values, 
respectively, in the sets {u,)C M@) and {(I~) C W), are connected by the relationships 

L,[e,; A,, h&r = A,'TL,[A;'e,A;'],<, A,'r (3.4) 

L, [e&a = hTL, [&e,A,; 4, Akt AzT 

and allow of the following general reduced forms: 

(3.5) 

with mappings F, and F, invariant with respect to the shift of the time argument. 

CoroZZary 3. The CR of the Il'yushin macroscopic determinacy postulate and the No11 CR 

ZI = @[['fPr]s<‘> S = QR [Xl,,, Q= (3.6) 

are mutually equivalent, are general forms of the form (3.5) and describe the properties of 
any medium. 

Analogously, taking account of Lemma 4 the following theorem holds. 

Theorem 2. Implicit assignment of the CR of any medium has infinitely many material 
and spatial representations in the form of the equations 

HO [eO (a, r), s, (a, 41,~ = 0 

H, IO, (a, 4, e, (a, 4; 4 (a, 4, & (a, 41,~ = 0 (2 = 1, 2) 

(3.7) 
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independent of the reference system, connected by the equivalence relationships 

(when (1.3)-(1.6), (2.2), (3.1), (3.2) are taken into account) and allowing the following 
general reduced forms 

with equations No = 0 and N, ; 0 that are invariant with respect to a shift in the time 
argument. 

Like (3.6) the implicit Il'yushin and No11 general CR forms have the form 

N,r [Z,, Yr],st = 0, N,N [Q“SQ, Xl,,, :- 0 (3.lU) 

CoroZZary 4. The implicit material and spatial CR representations (3.7)-(3.9) are 
solvable in the form of explicit material and spatial representations for e. (a, 0 and e1 (a, t) 
(the principles of determinism and causality are satisfied) only simultaneously and, more- 
over, in the form (3.3)-(3.5), respectively. 

Theorems 1 and 2 and Corollary 4 reveal the possibility of realizing the fundamental 
principles of the classical theory of CR of the mechanics of a continuous medium and yield 
answers to the fundamental questions posed at the beginning of the paper. 

4. Ezamptes. Theorems 1 and 2 are also illustrated by Examples 1 and 2 in Sect.2 and 
enable one to change from material CR representations tb spatial representations and vice- 
versa, moreover, with different Al. .\I (I = 1, 2). 

Thus be setting e0 = X1, F" -= C, (T, == S, E, F, where A1 = Q, A, = QT, A, =: A-‘=, Al =- A-‘, 

according to Theorem 1 we obtain the CR of a non-linearly elastic isotropic body /lo/ in the 
material representation (in terms of X,,C) and the spatial representation (in terms of S, F) 

XI = foe-'i f1I -f f-Cc, S =~ fal + flF -1 frFZ (4.0 

and correspondingly in Lagrange and Euler components /l/ (the initial Lagrange and Euler 
coordinate systems are rectangular Cartesian) 

(4.2) 

where io, fl, f2 are functions of invariants of the tensor C (or F), and 2t. ni are Cartesian 
components of the vectors z, a (from (1.1)). Setting (rO == 2,. e, = '4, ='I% (C - IJ,o, = S, e, = E, E 
'la (I -F-l) and A, = A-“, A1 =: A-‘, A2 = AmtT, A,= A-l respectively, and takingaccount of (1.9), 
we obtain both CR representations of the theory of plasticity of Small curvature (initially 
given in /30, 31/ in a spatial representation) 

2, - oc-'= k(WY*‘- ul)C_', S-01 m= k(V- UI) (4.3) 
(k = 2@ (S)/3UU) 

or in the Lagrange and Euler components, respectively 

s"j _ cg"j - k (‘/,g’ii 4. ug”), Oij - dij = k (Uij_ v6,j) (4.4) 

Here Q, is a known material function, I;ij are the Euler components of the strain rate 
tensor V, while the mean strain rate v, the strain rate intensity vu , and the strain trajec- 
tory arc length s are expressed in terms of invariants of both the tensor V and the tensor 
C and its derivative, and the hydrostatic stress a is expressed in terms of both S and x1 
together with C. 

A formulation of a viscous fluid CR in terms of the same tensors and their components 
is analogous to (4.3) and (4.4). 

Theorem 2 also enables a four term CR with a Jaumann derivative given in terms of 
spatially oriented tensors S, V to be written equivalently in terms of materially oriented 



tensors B,,C 

and in components 

E,’ $ ‘/,C-‘C’E I + ‘/,EIC’C-’ = aE, - Q.b (c-1)’ + cc-1 

S*=aS+bV+cl 
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(4.5) 

(4.6) 

dl _ aikokj + crikokj = aoil t- buij -I- c&i, 

where (.)* is the Jaumann derivative, olj are the components of the angular velocity tensor 
(spin), and a, b, c are functions (functionals) or arbitrary (separate and combined) in- 
variants of the tensors S and V (or X, and C with its derivative). Representations of the 
CR of the theory of plastic flow (small curvature) (4.3), (4.4), the CR of linear hydro- 
elasticity /3, 25/, three-term CR of plasticity /l, 32/, taken for finite strains in terms 
of the space tensors S and V are obtained as special cases of (4.5) and (4.6). 

It is important to note that, as Corollary 4, Example 2 in Sect.2 and the present 
particular example of (4.5) and (4.6) show, the questionof the unique solvability of equations 
of the form (3.7) with spatial measures 0 zz 01. e = e, for ~,(a, t). i.e., when the determinism 
and causality principle are satisfied, reduces to the question of the solvability of the 
corresponding equation for the right measures 00. 8,. In the case of Example 2 of Sect.2 
and the CR (4.5) and (4.6), the solution of the system of differential (differential-func- 
tional) equations with parametrized differential operators (the Jaumann derivative, say) 
(parametrized tensors (1.4) determined according to (1.6) and (2.2) by unknown (arbitrary) 
spatial motion of an element of the medium) reduces to the solution of a system of ordinary 
differential (differential-functional) equations with non-parametrized operators of material 
differentiation with respect to time of the material tensors, which is a much simpler problem. 
The solution obtained for the material (right) tensor measures enables us to write the sol- 
ution of the initial Eq.(3.7) rapidly for the spatial (left) measures according to (3.5). 

Thus, for the model of a viscoelastic body of Maxwell type under finite strains given in 
terms of the left tensors S and V by an equation of the type (3.7) 

D [S] = EV - T-3 (4.7) 

(the operator D [S] is determined according to (1.8), say, with AsA~FA-~~, here, and E, l' 
are constants) such a procedure yields an explicit form of the solution 

s = SE, - + A-= ({ ATEIA OX~ c- 9) dr) A-’ (4.8) 

E, ” ‘/$ (I - F-1) 

where E, is the Almansi strain tensor. 

5. Co?U?tusio?ls. The concepts of right and left objective tensors and the equivalence 
relations (1.3) between them etablish a one-to-one connection between mappings of the right 
and left tensors utilized, respectively, in the Lagrange and Euler descriptions of the 
characteristics of the motion and mechanical properties of the medium. The concepts of the 
mappings and equations being independent of the reference system afford effective 
opportunities for constructing general reduced forms of such mappings and equations 
connecting the objective ‘tensors of different kinds, including reduced forms of the 
constitutive relationships (equations of state) and their "Lagrange" and "Euler" 
formulations. 

By using these concepts for the classical mechanics of a continuous medium that 
stipulates satisfaction of the fundamental principles and hypotheses of macrophysical 
determinacy with respect to the CR, mentioned in Sect.3, an exhaustive set of general 
reduced CR forms (each of which corresponds to a specific choice of the stress and strain 
measures) is obtained, in both explicit and implicit form, and it is shown that the 
Il'yushin and No11 classical CR postulates macroscopic detenninacy are equivalent general 
reduced forms. In turn, the specific selection of the stress and strain measures can 
dictate either the convenience of the computations or the processing and interpretation of 
the experimental data, or a tendency to satisfy definite regularities or dependences (of the 
proposed kind) for the class of materials (processes) under consideration, i.e., such a 
choice can be an essential element in constructinga theory of CR. 

The question of the single-valued solvability of the equations (implicit forms) given 
in terms of the left tensors and, as a rule, parametrized by tensors governing the unknown 
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(arbitrary) spatial motion of an element of the medium, reduces to the solvability of 
corresponding non-parametrized equations for the right strain and stress measures (in 
particular, parametrized differentialequations with objective left tensor derivatives reduced 
to ordinary differential equations in the right tensors) by using the developed apparatus of 
equivalent representations. 

The results obtained can be extended to tensors of higher rank (r;x 2). Investigation 
of the special structure (reduced form) of non-parametrized mappings of left tensors into 
left, and the structures of mappings of tensors of other kinds including the mapping of 
tensors of different ranks, is of interest. Additional forms for describing mappings 
(specified explicitly and implicitly) can be given by an investigation of tensors of "mixed" 
type ((1.4) for a tensor of second rank) and their connections with the right and left tensors 
considered. 
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SUPERSONIC CLEAVAGE OF AN ELASTIC STRIP* 

V.M. ALEKSANDROV and B.I. SMETANIN 

The problem of the longitudinal cleavage of an infinite elastic strip by 
a thin smooth rigid wedge is examined. The wedge moves symmetrically 
with respect to the faces of the strip at a constant supersonic 
velocity. Formulas are obtained that govern the stresses in the domain 
of wedge contact with the elastic medium and the displacements of points 
of the slit edge outside the contact domain for certain relationships 
between the parameters of the problem. Conditions are set up for which 
separation of the medium from the wedge surface occurs. Unlike the case 
of wedge motion at a speed less than the Rayleigh velocity /l, 2/, when 
a crack is formed ahead of the wedge, no crack is formed when the wedge 
moves at supersonic speed. The contact problem of the motion of a rigid 
stamp with a flat smooth base at a supersonic speed over the surface of 
an elastic strip was investigated /3/ in a similar formulation. 

1. We will first consider the auxiliary problem (plane deformation) of the motion of a 
concentrated force P at a'constant supersonic velocity V (V>c,>c,, where c1 and cp are, 
respectively, the velocity of sound of longitudinal and transverse waves in the elastic medium) 
over the surface of an elastic strip of thickness k. Let the strip be rigidly clamped along 
the base. Then the boundary conditions of the auxiliary problem in a moving system of coordi- 
nates whose origin is superposed on the point of application of the concentrated force, will 
have the form (6 (5) is the delta-function) 

ov = -P6 (x), Txs = 0 (y = 0). u = u = 0 (y = 42) (1.1) 

It is well-known that such a problem reduces to finding two wave functions connected by 
the boundary conditions and can be solved in closed form /3/. For the system of shock waves 
shown in Fig.1 we present the final expression for the displacement of points of the strip 
upper boundary in the direction of the y-axis 

u (x, 0) = Pfs [rl (5) - D,rl (z + iqh) - D,rI (z + f3h + yh)l (1.2) 

II(t) = 
f 

0 (t,(j) 

-1 (t<o)’ 
@= G 4Y(B -Jri) 

Y=+ 1 


